
Classifying simulation methods1

Guillaume Chérel2

2018-09-123

Contents4

Introduction 15

Function type 26

Models and methods as functions 37

Methods and their types 48

Direct sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

Conclusion 813

Introduction14

A model on its own has no purpose. It requires a scientific question and a15

simulation experiment to produce an answer to that question: how shall one16

run simulations, with what input parameters, how should they vary. . . The17

process of modelling is that of finding a path that connects a question to an18

answer, with models and simulation experiments. To draw this path, how one19

constructs their models depends on the experiments they can design, thus on20

the simulation methods they know of and can use.21

A simulation methods is an algorithm that takes a simulation model and runs it22

in a certain way to produce some data. For example, a very simple method is to23

run a simulation for a given list of parameter values and compute the mean and24

standard deviation of the model output. Many more methods are available, and25

a lot of questions can be answered with an appropriate combination of them.26

In the team developping the OpenMOLE platform, we work with researchers of27

various fields and help them design simulation experiments. With time, we find28

1



ourselves developping an increasing number of methods. We are looking for a29

way to organise them and communicate about them.30

Simulation methods can be experessed as functions, and function types are31

a good way to describe functions, abstracting away the internal details. We32

propose to use types to describe and classify simulation methods.33

The objective is that upon reading a method type, one should be able to guess34

the method purpose without having in depth knowledge of its mathematical or35

algorithmic details. Readers should know if the method is applicable do their36

case of study, including the structure of its model and the scientific question.37

The following 2 sections will clarify the notion of function type and show where38

functions appear in simulation. Then, we will review some examples of simulation39

methods and their types.40

Function type41

In computer science, the notion of a function is close to its mathematical42

counterpart. It takes a value and returns another. We will add some information43

by using types: a function takes a value of some type a, and returns a value of44

another type b. Let’s call such a function f . We will write:45

f : a→ b

The part a→ b is called the the function type. As we will see, it carries some46

meaningful information.47

For example, we can define a function which takes a letter in the alphabet and48

returns a natural number from 1 to 26, such that “A” is associated to “1”, “B”49

to “2”, . . . , “Z” to “26”. Let’s call l this function. To refer to the output value50

of the function, we usually write l(”A”), l(”B”), . . .. For example, l(”C”) = 3.51

This function takes a value of type Letter of the alphabet, and returns52

a value of type Natural number, or Nat for short. So we will write53

l : Letter of the alphabet→ Nat, and Letter of the alphabet→ Nat is l’s type.54

As another example, the function abs which gives the absolute value of an integer,55

such that abs(−3) = 3 and abs(2) = 2, has the type: Int → Nat, where Int56

denote the types of integers.57

A function can take multiple arguments. We will write their types with multiple58

arrows: arg1 type → arg2 type → arg3 type → · · · → result type. Let add be59

function that takes two integers and returns their sum. Its type is: Int→ Int→60

Int. We get its result by writing add(a)(b). For example, add(1)(2) = 3.61

A function can also return a function. The type of a function that takes a value62

of type a and returns a function of type b → c is written a → (b → c). In63

2



fact, the type of the function add can also be read as Int → (Int → Int). The64

function add can equivalently be seen as a function which takes two arguments65

and returns a value, or as a function which takes one argument and returns66

a function, itself taking one argument and returning a value. To emphasize67

the second interpretation, we can note that if we give a single argument to the68

function add, we get the function: add(a) :: Int→ Int. If we pass a value b to69

this function, we get the sum of a and b: add(a)(b) = a + b. This notation is70

the same as with multiple arguments, this is why the signatures a→ b→ c and71

a→ (b→ c) are equivalent.72

More generally, a function taking n arguments can be seen as a function that73

takes 1 argument and returns a function taking n − 1 arguments, all the way74

down. So, the types75

a1 → a2 → a3 → · · · → an → b

and76

a1 → (a2 → (a3 → (· · · → (an → b) . . . )))
are equivalent.77

Just like a function can return a function, it can also take a function as argument.78

The type of a function taking a function of type a→ b and returning a value of79

type c will simply be written (a→ b)→ c. Because we read function types from80

left to right, this time, the parentheses are mandatory. If we forget them, we are81

writing the type of a function taking two arguments as seen above:82

a→ b→ c = a→ (b→ c) 6= (a→ b)→ c

The meaning of function type written with concrete types like Int → Nat is
clear. A function type written with type variables like a→ Int means that the
function takes a value of any type and returns an integer. The type a→ a is for
a function that takes a value of any type and return a value of the same type.
For example, let’s consider a function map that takes a function f : a→ b, a list
of values of type a, and applies f to all the elements of the list and returns the
new list. For example:

map(add(1))(List(1, 2, 3)) = List(2, 3, 4)
map(l)(List(”A”, ”B”)) = List(1, 2),where l is the function defined above.

The type of map is: (a → b) → List(a) → List(b). We start to get an idea of83

how function types carry information about what a function does.84

Models and methods as functions85

A simulation model usually takes some inputs that can be parameters, initial86

conditions, and returns some output. We propose to see a model as a function of87

3



type x→ y. This is the most generic type for a simulation model. Let’s consider88

a simple predator-prey model which simulates the population dynamics of sheeps89

and wolves, takes as input the initial number of both populations, a number of90

years, and returns the number of sheeps and wolves as many years later. This91

model can be represented by a function of type (Nat, Nat, Nat)→ (Nat, Nat).92

Models inputs and outputs can be arbitrarily complex: they can be composed of93

arrays, matrices, geographical data, networks, time series, . . . .94

A single type can be attributed to multiple functions. There can be different95

functions to model the dynamics of two populations of preys and predators.96

They may encode different dynamics and answer differently to the same input97

values, but as long a they take as input a number of prey and a number of98

predators, and give the same information back, they all share the same type.99

A simulation method takes a model, runs simulations, and returns information100

based on the simulation output. A simulation method can be represented by a101

function of type: (x→ y)→ r, where r is the result type. Usually, simulation102

methols will take additional arguments. For example, model calibration aims at103

finding a model input value such that the model produces a desired output. It104

requires as additional argument the desired output. Such a method may have a105

type like:106

y → (x→ y)→ x

We propose to use types to classify simulation methods. In the following, we107

will see a list of generic methods which work on a wide class of models. We will108

see that we can guess from the method type alone the purpose of the method.109

Methods and their types110

The following are examples of simulation methods and an illustrations of how111

they can be described by types. The intention is to show how we can use types112

to classify methods rather than to propose a definitive classification. As we will113

see, there is more than one way to describe a single method.114

Direct sampling115

Direct sampling is straightforward: run a model on a sequence of input values,116

and get pairs of the inputs and associated outputs. A good implementation117

may take care of distributing the simulations in parallel to significantly reduce118

the overall simulation time. It does little work for the modeller beyond that: it119

is left to them to choose how to use the list of associated inputs and outputs.120

Different sampling methods can be used to construct the input list, with different121

properties: uniform sampling of the input space, grid sampling, one factor at122

a time, latin hypercube sampling, Sobol sequences, etc. Each sequence have123

4



different properties which we will not detail here but can affect the usage of the124

result.125

All direct samplings, however the sequence is generated, may have the following126

generic type:127

(x→ y)→ Listn((x, y))

where Listn(x) should be read as “a list of n elements of type x”.128

A particular direct sampling method will have a more specific type, reflecting129

the way the sequence is built. For example, a simple direct sampling can just130

require the users to build the sequence themselves. It may be represented as the131

function:132

simpleDS : Listn(x)→ (x→ y)→ Listn((x, y))

If we give it a list l of type Listn(Int), for example, it returns a function:133

simpleDS(l) : (Int→ y)→ Listn((Int, y))

We say that this type is more specific than the type (x → y) → Listn((x, y))134

above because we can turn the latter into the former by replacing x by Int.135

We have our classification criterion, we say that a method represented by a136

function f is a direct sampling if it can return a function f ′ : (x′ → y′) →137

Listn((x′, y′)) whose type is more specific than the generic direct sampling type.138

As another example of direct sampling, we could sample the input values uni-139

formly. We know how to sample a real value uniformly within a finite interval.140

We can repeat the process to generate input values for a model that takes as141

input k real values. This method would require the user to provide it with an142

interval for each real value of the model input, and a seed to initialise the random143

number generator by sampling. It could be represented by the function:144

uniformRealDS : Listk(Interval)→ Seed→ (Listk(Real)→ y)→ Listn((Listk(Real), y))

With the type Seed appearing in the function type, we are making explicit that145

this method is stochastic, suggesting that replications may be necessary in order146

to draw robust conclusions. Because the sampling process used produces real147

values, this function restricts the type of the model to one that takes k real148

values as inputs, where k is the same as the number of intervals given as first149

argument.150

If the model takes inputs within a finite number of values, it is also easy to151

sample uniformly, we just pick one at random n times. A function that would152

realise this could be:153

uniformDiscreteDS : Listm(x)→ Seed→ (x→ y)→ Listn((x, y))

As a last example, let’s use Sobol sequences to build the input list. A Sobol154

sequence can generate values between 0 and 1 in k dimension (i.e. points in155

5



the k-dimensional unit hypercube), with good space filling properties. A direct156

sampling using a Sobol sequence can be represented by a function:157

sobolDS : (Nat, Nat)→ (Listk([0, 1])→ y)→ Listn((Listk([0, 1]), y))

where the first argument of type (Nat, Nat) is (n, k), the number of input values158

to generate and the dimension of the input. This method restricts the model159

type to input of k numbers between 0 and 1.160

These examples are different direct sampling methods, using different algorithms,161

constraining differently the types of models they can work on, but they all fit162

into the class of direct sampling: they can all return functions that are more163

specific than the generic direct sampling type.164

Calibration165

We’ve already talked about the problem of calibration in the previous section.166

Its purpose is to find an input value such that the model reproduces some desired167

output. The result we require from a method of this type is just one input value,168

even if there are multiple solutions. There is no guarantee that there will be169

one for any given models. We need to represent that the method can return170

one solution or none. We will use result type is Maybe(x). It represents either a171

value a of type x, written Just(a), or a value which represents no value, simply172

written Nothing.173

A calibration method should always require a desired output and a model and174

return a just one value or nothing.175

y → (x→ y)→ Maybe(x)

It may be difficult to implement algorithms that solve this problem exactly. For176

example, when the model outputs real numbers, due to the limited precision177

of floating-point numbers on a computer, it may be impossible for a model to178

output a certain value in simulation, even if it can in theory.179

In OpenMOLE, we use genetic algorithms to give an approximate solution to this180

problem. A simple genetic algorithm would first creates randomly n candidates181

(input values) and computes their scores by running a simulation for each, and182

computing the euclidean distance between the simulation output and the desired183

output. Then it would select the m closest and recombine them together by184

pairs to recreate a new population of n candidates. After T generations, it185

would return the closest candidate. This genetic algorithm would require a186

number of candidates to generate, a number of best candidates to select, a187

number of generations to run, a function to recombine a pair of candidates and188

generate a new one ((x, x)rightarrowx) and a random seed. Since we use the189

euclidean distance to compare the simulation outputs to the desired outputs, the190

6



output type needs to be a sequence of real numbers. The type of the method191

implemented with this genetic algorithm is:192

calibGA : (Nat, Nat, Nat)→ ((x, x)→ x)→ Seed→ Listn(Real)→ (x→ Listn(Real))→ Maybe(x)

This method is a calibration in the same sense than the method in the previous193

sections are direct samplings: it returns a function whose type is more specific194

than the generic calibration type.195

The previous type is more difficult to read than the generic type above. Generally,196

more specific types require more work from the reader than more generic ones. It197

is important to give the specific type when designing a method, because it helps198

users know exactly in what context they can work, and if they are applicable199

to their case of study. But it is good to fit specific method into more generic200

types, because those are easier to understand. Intuitively, generic types give the201

purpose of a method: they tell us why one would want to use it. Specific types202

tell us how to use them.203

Inverse204

The method inverse extends calibration: instead of looking for one input value205

such that the model reproduces the desired output, we are looking for all of206

them. It takes a desired output, a model, and returns a set of all the input207

values such that the model reproduces the desired output. The generic type for208

inverse methods could be:209

y → (x→ y)→ Set(x)

where Set(x) is the type for a set (in the mathematical sense) of elements of210

type x.211

Interestingly, when we apply an inverse function to a model m : x→ y, we get a212

function that looks precisely like the inverse of the model:213

inverse(m) : y → Set(x)

that is, a function taking a value of type y and returning values of type x.214

A candidate method called OSE (Origin Space Exploration) is currently being215

developed at ISCPIF.216

Diversity217

This problem aims at finding all the different outputs that a model can generate.218

Its type is simple: it is a function that takes a model and returns the set of all219

possible outputs. In mathematical terms, with the model represented by the220

function m : x→ y, we are looking for the image of m. The generic type is:221

7



(x→ y)→ Set(y)

One use of this method is to test a model. If the among the model outputs we222

find unacceptable values, it may be the sign that there is an error in the model223

assumptions or in the implementation. This gives the modeller an opportunity224

to investigate and improve the model.225

Another use is a kind of sensitivity analysis. Let’s say we have a model that we226

want to use for prediction, and we have measured sensible parameters for the227

model, but our measurement is noisy. We may use this method by restricting228

the model parameter so they can only vary slightly around the measured value.229

By studying the result of the method, we can tell if the model always makes230

the same prediction when the parameters vary slightly, or if they can change231

radically. If so, we will probably want to be cautious about using it to make232

predictions.233

Here again, this is the ideal formulation of the problem and we will most likely234

only design approximations. The difficulty is that, unless we can try exhaustively235

all the possible input values (which may only be possible for model for which236

the possible inputs are countable and few), there is usually no way to know if237

we have found all possible output values or not. It may be that the particular238

method that we use is unable to find other possible output values and stagnates.239

One candidate method for this problem is PSE (Pattern Space Exploration),240

developed at ISCPIF.241

Conclusion242

Methods can be represented as functions and described with function types. We243

have introduced a classification criteria that hierarchically organizes method244

typesm. At the top, the most generic type is (x→ y)→ r in which all simulation245

method fit. We have seen a few other classes that populate the next level:246

• direct sampling: (x→ y)→ Listn((x, y))247

• calibration: y → (x→ y)→ Maybe(x)248

• inverse: y → (x→ y)→ Set(x)249

• diversity: (x→ y)→ Set(y)250

And we have given examples of specific method types that are the leaves of the251

hierarchy. Those are the method that can actually be implemented and used in252

a simulation experiments.253

Types of more generic classes give us some intuition about what a method does.254

They can be used to convey concisely the meaning and usage of a method without255

going very deep into the implementation details, saving researchers time and256

making them more accessible.257

8



The types of specific method requires more work from the reader to be understood,258

but give precise information about what information they require from the user259

and what they give back.260

The types of generic classes tell us why one would want to use a certain method.261

Specific types tell us exactly how to use them.262

9


	Introduction
	Function type
	Models and methods as functions
	Methods and their types
	Direct sampling
	Calibration
	Inverse
	Diversity

	Conclusion

